Rolling of a solid disc on horizontal

Rolling , specifically a pure rolling is a classic example of combined translational and rotational motion. While talking about the rolling of a  solid disc over horizontal ground, actually we are discussing a simple case of rolling. Pure rolling refers rolling without slipping. Thus, there is no presence of kinetic friction between point of contact and horizontal surface. Kinetic friction keeps acting until pure rolling is achieved.  Static friction may or may not be present in the motion, it depends on on factor whether a force is present throughout the motion or not.        
 For permanent pure rolling(without slipping), we have conditions i.e.  v=\;R\omega and a=\;R\alpha
These are relations between angular speed and linear speed (angular acceleration and tangential acceleration) defines the situation of rolling without slipping.

Rolling of a solid disc on horizontal - A Case of Pure rolling

Here, we are considering an example which incorporates the concept of rolling of a solid disc on horizontal – a case of Pure rolling and its both kinetic energies- translational and rotational. Also, we can use these conditions (of rolling) to relate both kinetics energies of combined translational and rotational motion. 

Example - A solid disc is rolling without slipping on a horizontal ground as shown in figure. Its total kinetic energy is 150 J . Its translational and rotational kinetic energies respectively are

(A) 50 J , 100 J

(B)100 J , 50J

(C) 75 J, 75J

(D) 125J , 25J

Rolling of a solid disc on horizontal and its K.E. energies Mechanics 10 Important Problems for IIT-JEE and NEET

Solution

As we know that, for pure rolling(without slipping) v=\;R\omega
Rolling of a solid disc on horizontal and its K.E. energies Mechanics 10 Important Problems for IIT-JEE and NEET
\frac{K.E._R}{K.E_T}=\frac{{\displaystyle\frac12}I\;\omega^2}{{\displaystyle\frac12}m\;v^2}
\frac{K.E._R}{K.E_T}=\;\frac{\displaystyle\frac12\left(mK^2\right)\;\omega^2}{\displaystyle\frac12m\;v^2}
\frac{K.E._R}{K.E_T} =\frac{\displaystyle K^2\;\omega^2}{\displaystyle v^2}
\frac{K.E._R}{K.E_T}=\frac{\displaystyle K^2\;\omega^2}{\displaystyle{(R\omega)}^2}=\frac{\displaystyle K^2\;\omega^2}{\displaystyle R^2\;\omega^2}
\frac{K.E._R}{K.E_T}=\frac{\displaystyle K^2\;}{\displaystyle R^2\;}.......(1)
Now, I=\;\frac12m\;R^2=m\;K^2\; where\; K \;is \;radius\; of\; Gyration
\Rightarrow\frac{K^2}{R^2}=\frac12.......(2)
\Rightarrow\;\frac{K.E._R}{K.E_T}=\frac{K^2}{R^2}=\frac12 [from (1) and (2)]
\Rightarrow\;\frac{K.E._R}{K.E_T}=\frac12
\Rightarrow\ K.E_T=\;\left(\frac2{1+2}\right)\;K.E._{total}
\Rightarrow\ K.E_T=\;\left(\frac2{3}\right)\;*150
\Rightarrow\ K.E_T= 2* 50 = 100J
Similarly, K.E_R=\;\left(\frac1{1+2}\right)\;K.E._{total}
\Rightarrow K.E_R=\;\left(\frac1{1+2}\right)\;*150
\Rightarrow K.E_R=\;\left(\frac1{3}\right)\;*150
\Rightarrow K.E_R=1*50=50J
(B) is correct option

Conclusion: -

From above discussion , we can easily understand that the basic knowledge of moment of inertia, kinetic energies and condition of rolling (without slipping) helps us to solve problems based on such concepts. For more question visit the page Physics-XI Mechanics 

4 thoughts on “A solid disc is rolling without slipping on a horizontal ground as shown in figure. Its total kinetic energy is 150 J . What are its translational and rotational kinetic energies respectively?”

  1. Its like you read my mind You appear to know so much about this like you wrote the book in it or something I think that you can do with a few pics to drive the message home a little bit but instead of that this is excellent blog A fantastic read Ill certainly be back

    1. Thank you for your wonderful feedback! I’m really glad to hear that the content resonated with you and provided valuable insights. Your suggestion about including pictures is a great one and something I’ll definitely consider to make the posts even more engaging. I’m thrilled that you enjoyed the blog and found it a fantastic read. I look forward to welcoming you back soon—thanks again for your support!

  2. Wonderful beat I wish to apprentice while you amend your web site how could i subscribe for a blog web site The account aided me a acceptable deal I had been a little bit acquainted of this your broadcast provided bright clear idea

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top