Transient Current: Charging of Capacitor with DC source

Charging of Capacitor with DC source - IIT Advanced Topic

Transient Current :

Transient current is a temporary current that flows for a short, finite duration, starting from zero to a maximum value or from a maximum value to zero, in response to a sudden change in the circuit conditions, such as when a switch is turned on or off.

Charging of Capacitor : Introduction

Capacitor with DC source is practically CR circuit. In the capacitor charging there are three stages:

  1. Initial Condition:

    • When an uncharged capacitor is connected to a voltage source through a resistor, the transient current initially flows from zero to a maximum value.
  2. Exponential Decay:

    • The current then decreases exponentially over time as the capacitor charges, described by the equation:
      I(t)\;=\;I_o\;e^{-\frac t{CR}}
      where E is the applied voltage, is the resistance, is the capacitance, and 𝑡 is the time elapsed.
  3. Steady State:

    • Once the capacitor is fully charged, the current drops to zero, indicating the end of the transient period. 
      I\;=\;\frac{dq_0}{dt}=\;o\;
Initial Condition
Transient Current: Charging of Capacitor with DC source
When switch is just closed, time, t=0 and capicitor is uncharged . So, Charge q=0
Also, intially the current will be maximum.
hence, I_o=\;\frac ER
Steady State
Transient Current: Charging of Capacitor with DC source
Capacitor continues getting charged until it is fully charged . This is called steady state.

As, we know that 

I\;=\;\frac{dq_0}{dt}=\;o\; 

where q_o is maximum charge

Therefore, according to Kirchhoff’s loop rule

E\;-\;\frac{q_o}C-(0)\;R=\;0

 

E\;-\;\frac{q_o}C=\;0

 

E\;=\;\frac{q_o}C

 

q_o\;=\;EC…….(1)

 

Assume that capacitor is charged up to charge q at any time t.
Therefore, time = t and charge = q
According to Kirchhoff's loop rule,
E-\;\frac qC-IR\;=\;0
EC-q-ICR\;=\;0
EC-q-\frac{dq}{dt}\;(CR)\;=\;0
q_o-q-\frac{dq}{dt}\;(CR)\;=\;0 [from(1)]
\frac{q_0-q}{CR}-\;\frac{dq}{dt}=0
\frac{q_0-q}{CR}=\;\frac{dq}{dt}
\frac1{CR}\;dt\;=\;\frac{dq}{q_o-q}\;
Integrating both sides
\int_0^t\frac1{CR}\;dt\;=\;\int_0^q\frac{dq}{q_o-q}\;
\frac1{CR}\int_0^t\;dt\;=\;\int_0^q\frac{dq}{q_o-q}\;
\frac1{CR}\;\left|t\right|_0^t\;\;=\;\;\left|\frac{\log_e\left(q_o-q\right)}{-1}\right|_0^q
\frac1{CR}(t-0)\;\;=\;\;-\;\lbrack\log_e\left(q_o-q\right)-\;\log_e\left(q_o-0\right)\rbrack
-\frac t{CR}\;=\;\;\;\log_e\left(\frac{q_o-q}{q_o}\right)
e^{-\frac t{CR}\;}\;=\;\frac{q_o-q}{q_o}
q_o\;e^{-\frac t{CR}\;}\;=\;q_o-q
\;q=q_o-\;q_o\;e^{-\frac t{CR}\;}\;
\;q=q_o(1-\;\;e^{-\frac t{CR}\;}\;)
q=\;q_o\;(1-e^{-\frac t\tau})
\tau = CR is called Time Constant

When time t=\;1\;\tau

So, q=\;q_o(1-\;e^{-1})\;=\;0.632\;q_o

Capacitor gets charged by 63.2% in first time constant

When time t=\;2\;\tau

So, q=\;q_o(1-\;e^{-2})\;=\;0.865\;q_o

Capacitor gets charged by 86.5% in two time constants

When time t=\;3\;\tau

So, q=\;q_o(1-\;e^{-3})\;=\;0.950\;q_o

Capacitor gets charged by 95% in three time constants

When time t=\;4\;\tau

So, q=\;q_o(1-\;e^{-4})\;=\;0.982\;q_o

Capacitor gets charged by 98.2% in four time constants

When time t=\;5\;\tau

So, q=\;q_o(1-\;e^{-5})\;=\;0.993\;q_o

Capacitor gets charged by 99.3% in five time constants

When steady state is attained, capacitor is fully charged

t\;\rightarrow\infty

q=\;q_o(1-\;e^{-\infty})\;

q=\;q_o(1-\;0)=\;q_o

So, q=\;q_o

\;q=q_o(1-\;\;e^{-\frac t{CR}\;}\;)
taking derivative both sides w.r.t. t
\frac{dq}{dt}=q_o\;\frac d{dt}(1-\;e^{-\frac t{CR}})
\frac{dq}{dt}=q_o\;\lbrack\;0-\;e^{-\frac t{CR}}\;\times\;(-\frac1{CR}\;)\;\rbrack
\frac{dq}{dt}=\;\frac{q_o}{RC}\;\;e^{-\frac t{CR}}\;
\frac{dq}{dt}=\;\frac{EC}{RC}\;\times\;e^{-\frac t{CR}}\;
\frac{dq}{dt}=\;\;\frac ER\;\times\;e^{-\frac t{CR}}\;
I=\;\;I_o\;\times\;e^{-\frac t{CR}}\; [ From (1) ]
I=\;\;I_o\;\;e^{-\frac t{CR}}\;

Exponential Growth of Charge : Charging of Capacitor

Exponential Decay of Current : Charging of Capacitor

I=\;\;I_o\;\;e^{-\frac t{CR}}\;

I=\;I_o\;e^{-\frac t\tau}

I=\;I_o\;e^{-\frac t\tau}

When time t=\;1\;\tau

I=\;\;I_o\;e^{-1}\;

I=\;0.368\;I_o\;

So, current reduces by 62.8% of maximum current in 1 time constant

When time t=\;2\;\tau

I=\;\;I_o\;e^{-2}\;

I=\;0.135\;I_o\;

So, current reduces by 86.5% of maximum current in 2 time constants

When time t=\;3\;\tau

I=\;\;I_o\;e^{-3}\;

I=\;0.05\;I_o\;

So, current reduces by 95% of maximum current in 3 time constants

When time t=\;4\;\tau

I=\;\;I_o\;e^{-4}\;

I=\;0.018\;I_o\;

So, current reduces by 98.2% of maximum current in 3 time constants

When time t=\;5\;\tau

I=\;\;I_o\;e^{-5}\;

I=\;0.07\;I_o\;

So, current reduces by 99.3% of maximum current in 3 time constants

When steady state is achieved , then current reduces to zero

t\;\rightarrow\infty

I=\;\;I_o\;e^{-\infty}\; =0

Charging of Capacitor : An Overview

Initially, when switched is just on ,  capacitor is is uncharged and it offers zero resistance to DC source and current is maximum(largest possible). Thus, we can calculate the value of maximum current by formula,  I_o=\;\frac ER 

Finally, steady state is attained after some time (theoretically , when  t\;\rightarrow\infty ) and capacitor gets fully charged. Now, capacitor starts blocking DC (direct current) and it reduces to zero i.e. I = 0

Consequently, maximum charge is q_o\;=\;EC

During charging of capacitor , current falls from I_o to 0 . This is known as decay of current. It is found that the decay of current is exponential decay as according to formula  I=\;\;I_o\;\;e^{-\frac t{CR}}\;      

Numerical based on Charging of Capacitor

Ex. An uncharged capacitor and a resistor are connected in series, as shown in the figure below. The emf of the battery is ε = 10 V, C = 6 μF, and R = 500 kΩ.

After the switch is closed, find

(a) The time constant of the RC circuit.

(b) The maximum charge on the capacitor.

(c) The charge on the capacitor 6 s after the switch is closed.

(d) The charge on the capacitor 8.1 s after the switch is closed.

Solution:

(a) Time Constant, \tau = CR
\tau\;\;=\;6\mu\;\times\;500\;k=\;6\;\times10^{-6}\;\times\;500\;\times10^3
\tau\;\;=\ 3 s
(b) The maximum charge on the capacitor
Charge wll be maximum when steady state is achieved and capacitor gets fully charged, q_o=\;C\;E
q_o=\;6\times10^{-6}\times10\;=\;60\;\mu C
q_o =\;60\;\mu C
(c) The charge on the capacitor 6 s after the switch is closed.
Charge on capacitor at any instant t, q=\;q_o\;(1-e^{-\frac t\tau})
q(t)=\;q_o\;(1-e^{-\frac t\tau})
q(6)=\;q_o\;(1-e^{-\frac 63})
q(6)=\;60\;(1-e^{-2})
q(6)=\;60\;(1-0.135)
q(6)=\;60\;(0.865)
q(6)\;=\;51.9\;\mu C\;\approx\;52\;\mu C\;
q(6)\;=\;52\;\mu C\;
(d) The charge on the capacitor 8.1 s after the switch is closed.
Charge on capacitor at any instant t, q=\;q_o\;(1-e^{-\frac t\tau})
q(t)=\;q_o\;(1-e^{-\frac t\tau})
q(8.1)=\;q_o\;(1-e^{-\frac {8.1}3})
q(8.1)=\;60\;(1-e^{-2.7})
q(8.1)=\;60\;(1-0.067)
q(8.1)=\;60\;(0.933)
q(8.1)\;=\;55.98\;\mu C\;\approx\;56\;\mu C\;
q(8.1)\;=\;56\;\mu C\;

1 thought on “Transient Current : Charging of Capacitor”

  1. Pingback: Force between the plates of capacitor

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top